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The notion of the free interaction of a boundary layer [1-3] has proven to be very use- 
ful in different areas of the mechanics of liquids and gases [4, 5], including the theory 
of hydrodynamic stability [6, 7]. It describes the structure of Tollmin-Schlichting waves 
at large Reynolds numbers and makes it possible to solve a number of important new problems 
concerning the reaction of the viscous sublayer to three-dimensional disturbances generated 
by a source localized in space [8, 9]. 

However, as is known, the theory of free interaction in its classical form predicts 
that forward-traveling waves propagating in the direction of the incident flow will be stable 
under the condition that the velocity of the flow be supersonic. On the other hand, the 
equations proposed so far for the transonic velocity range have proven unsuited for the so- 
lution of problems concerning the stability of viscous flows, despite the fact that these 
equations have been correctly used to predict separation [I0]. It is obvious that there is 
a need for additional analysis of the initial system of Navier-Stokes equations in the indi- 
cated range, the goal here being to keep those terms which determine the loss of stability 
by the boundary layer. Such an analysis is made below. 

I. Equations of Motion. We will examine the uniform flow of a compressible gas with 
the velocity U~* about a flat plate. This velocity differs little from the velocity a~* of 
sound waves in the medium. It is assumed that a local irregularity (roughness) exists at 
the distance L* from the leading edge of the plate, flow in the neighborhood of this irregu- 
larity corresponding to the regime of free interaction [1-3]. Let ~* be the kinematic vis- 
cosity of the gas. We introduce the Reynolds number R = U~*L*/~=* + ~ and we express the 
small parameter ~ = R -I/8 in terms of it. We set ~ = (M= 2 - I)/K~' , K~' = const and hence- 
forth consider 6 to be a second small parameter, thus establishing the incident flow as be- 
ing transonic and having a Mach number M~ close to i. The problem consists of determining 
a relationship between s and 6 for which the resulting approximate equations will be capable 
of describing the stability of the boundary layer and the development of self-generating os- 
cillations in it. 

In the free interaction regime, the time t* and the space coordinates x*, y* are nor- 
malized as follows [1-3]: 

t* = (L * /U*~)e~6-1I~g- l t  ' ,  

x*  = L * ( I  -t- e36-3/Sx ' ) ,  Y* = L*e~5-11Sy ", 
( 1 . 1 )  

where the additional parameter ~ is determined by the frequency scale and the components u*, 
v* and pressure p* are expanded into asymptotic series 

u* ~ U~*[e6-11Su'( t  ", x ' ,  y ' )  -P .. .1, 

v* = U * [ @ 6 1 I S v ' ( t ' , x ' , y ' ) +  �9 �9 �9 1, e ~ * - - " *  •  rT*2 [ ~ ' a - 1 / % ~ ' / " - - e ~ 7  vor  o~r- - ~ , ~ ,  - ~ ' ,  Y ' ) + .  �9 �9 1. 
( 1 . 2 )  

Since the pressure does not change across the boundary layer, the ratio Tw*/T~* of wall tem- 
perature Tw* to the temperature of the incident flow T=* is inversely proportional to the 
ratio pw*/@~* of the analogous values of density 0"- With allowance for this fact, the equa- 
tions for the lower wall region of the flow take the form 

( T:*~ k - i  ,, Ou' 

Ou' Or' O, 8p' 
O x"--; + @--~ = ~-~ = O, 

v"Ju'  _ c T* 
+ u ~ - j , +  @, j - - -~ -T j , +  r*,~'2"y . 

(1.3) 
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In contrast to the classical Prandtl equations, the pressure gradient here is unknown before- 
hand and is calculated together with the velocity field. For simplicity, the plate is as- 
sumed to be thermally insulated. The letter C denotes the constant in the Chapman law lw* / 
I~* = CTw*/T~*, which connects the first viscosity coefficient I* = v'p* with temperature. 

In the external region of free interaction, the effects of viscosity and heat conduction 
are negligible in a first approximation. Thus, the flow in this region is nonvortical. We 
normalize the transverse coordinate in the region by means of y* = L*g~5-7/Sy'z, while for 
the potential ~* we write the expansion 

~* = U ~ * L * i x '  -{- e~6-a/s~/(t ' ,  x ' ,  g') @ ...].  ( 1 . 4 )  

Having restricted the subsequent analysis to the inequality ~6 -z/~ << l and having discarded 
small terms in the initial Navier-Stokes equations, we obtain 

2~ + ~-15 ~/8 5K" + 2~25 -~/~ a ~__A + e-~5.~/8 a'~, = 0. ( 1 . 5 )  
, 2  Ox'~ Oy~ 

An attempt here to retain all of the components leads to the estimates ~ ~ e s/5 and 
~ e 4/s but leads to disappearance of the term with 8u'/3t' in the left side of the last 

equation of (1.3). The asymptotic theory of transient transonic flows formulated as a re- 
sult correctly predicts separation of the boundary layer but is unsuitable for studying its 
stability, since the leading role in the development of wave processes in this case is played 
by the external region - where the velocity field is a potential field [10]. 

An alternative approach is based on the equality ~ = i. It follows from this that 5 ~ 
~8/9, which makes it necessary to ignore the nonlinear term (O~'/Ox')(~2~'1~x '2) in Eq. (1.5). 
Allowing for this term is the heart of the theory of the transient motion of a gas in the 
transonic velocity region if the effect of dissipative factors (viscosity and heat conduc- 
tion) are assumed to be negligible. Having taken 5 = E s/s for simplicity, in the limit e 
0 we write the linear equation 

2 a t a x ,  + K # ,, 0 ( 1 . 6 )  
ax" g' 

w i t h  t h e  p a r a m e t e r  K ' ~  = (V~ 2 - l ) / m  8 /9 .  

ALthough t h e  t h i c k n e s s  o f  t h e  b o u n d a r y  L a y e r  h a s  a p a s s i v e  r o l e  in  t h e  t h e o r y  o f  f r e e  
i n t e r a c t i o n ,  i t  i s  u s e d  in  t h e  p r o c e d u r e  o f  c o m b i n i n g  t h e  s o l u t i o n s  f o r  t h e  v i s c o u s  s u b l a y e r  
and t h e  p o t e n t i a l  r e g i o n  o f  t h e  f l o w .  P a s s a g e  t o  t h e  l i m i t ,  a t  which  Y'L § 0 and y '  + ~,  
gives 

f t j Xv  ~ 
0~1 (t', x', 0) a~l (t , 0) aA' (t', x9 

ax' p '  ( t', x ') ,  - - ,  ay~ ax" ( 1 . 7 )  

u '  - -  ~C-1/~(T~*IT~*)g ' ~ ~C -lz* ( T ~ * / T ~ * ) A "  at  g'  -~  ~ .  

H e r e ,  t h e  f u n c t i o n  A ' ( t ' ,  x ' )  h a s  t h e  mean ing  o f  t h e  i n s t a n t a n e o u s  d i s p l a c e m e n t  o f  t h e  
s t r e a m l i n e s  in  t h e  i n t e r m e d i a t e  f l o w  r e g i o n ,  w h i l e  t h e  c o n s t a n t  t = 0 .3321  c h a r a c t e r i z e s  
d i m e n s i o n l e s s  f r i c t i o n  in  t h e  B l a u s i u s  s o l u t i o n  f o r  t h e  u n d i s t u r b e d  b o u n d a r y  l a y e r .  

P r o c e e d i n g  on t h e  b a s i s  o f  t h e  g r o u p  p r o p e r t i e s  o f  Eqs .  ( 1 . 3 ) ,  ( 1 . 6 )  and c o n d i t i o n s  
( 1 . 7 ) ,  we e x c l u d e  t h e  c o n s t a n t s  C and I in  them a l o n g  w i t h  t h e  r a t i o  Tw*/T~*. For  t h i s  p u r -  
p o s e ,  we p e r f o r m  t h e  a f f i n e  t r a n s f o r m a t i o n  

t' = 2-~/9C2/9~-1a/9 (T~*/T=*)s/gt ,  x '  = 2-~/9C1r -4/a (T~* tT=*)V3x ,  ( 1 . 8 )  

Y' = 2-1/9Cn/~sX-7/9(T~*/T=*)~a/gY, gl '  ~ 2-7/gCS/isX-la/9(Tw*/T=*)~/ggl  

o f  t h e  i n d e p e n d e n t  v a r i a b l e s  ( 1 . 1 )  and t h e  t r a n s v e r s e  c o o r d i n a t e  y ' z  f o r  t h e  p o t e n t i a l  p a r t  
o f  t h e  f l o w .  As r e g a r d s  t h e  s o u g h t  f u n c t i o n s  in  ( 1 . 2 ) ,  ( 1 . 4 )  and t h e  d i s p l a c e m e n t  t h i c k n e s s  
A' f r o m  ( 1 . 7 ) ,  t h e  t r a n s f o r m a t i o n s  f o r  them a p p e a r  as  f o l l o w s :  

U' -~ 2-1/9C1/9~ 2~ (Tw*JT=*)~/ga, u' =- 21/9C7/18~,7/9 (Tw*/T~*)5/gu, 
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p' _~ 2-219C2/9~4/9(T w */T  *)-l/9p, 

A ' = 2-1/9Cll/18~ -7/9 ( T~* IT~*)~3/gA, ~p'~ = 2-5/9C5/9)~-8/9 ( yw* / T~*)u/o(pp 
(1.9) 

As a result, the system of equations 

OulOx § Ov/Og = O, Op/Og = O, 

Ou/Ot + uOujOx + vOu/Oy = --@/Ox A- O~u/ay 2, 

g o v e r n i n g  t h e  f l o w  in  t h e  v i s c o u s  s u b l a y e r ,  a l o n g  w i t h  t h e  l i m i t i n g  c o n d i t i o n s  

(1.10) 

U-+y, p--~0 at X--+--oo, u--y-+A(& x) at y-+oo (i.ii) 

acquires a canonical form which is independent of the initial parameters of the problem. 
The similarity of the external velocity field, the potential ~i of which satisfies the equa- 
tion 

02~x/(OtOx) + K~O~%lOx 2 -- O~JOgl 2 ~-- O, 

i s  d e t e r m i n e d  by a s i n g l e  c o e f f i c i e n t  d i f f e r i n g  f rom • 

(1.12) 

K ~  = 2-8/9C-i/9~ -2/9 (Tw*/T~*)-4/9(M~2 ~ 1 ) / e  s / 9  

since the boundary conditions for it are written in the form 

(l.13) 

8ft) 1 (t, z, 0) 8T] (t, x, 0) 8A (t, x). 
Ox = - - p ( t ,  x); = (1.14) 091 c~x " 

2. Eigenvalue Problem. We will begin with internal waves in the mechanical system 
being examined here, consisting of a viscous sublayer and a potential flow. With this in 
mind, we augment the limit relations (i.ii) for system (I.i0) with the conditions 

u = v = 0 at y = 0 (2.1) 

expressing adhesion of the gas to the surface of the plate. This leads us to a closed prob- 
lem which also contains Eq. (1.12) together with boundary conditions (1.14). The boundary 
conditions contain the function A(t, x), which is unknown beforehand. 

We take the solution and isolate the part u = y, v = p = A = ~i = 0, which describes 
the shear flow on the plate. The oscillations imposed on this flow will be proportional to 
the amplitude parameter a. Then, as usual, we put 

( u -  g, v, p, A ,  ~1) = a(uo, re, Po, Ao, (p0)exp(~t q- ikx) .  ( 2 . 2 )  

I n s e r t i n g  ( 2 . 2 )  i n t o  t h e  e q u a t i o n  f o r  t h e  v i s c o u s  s u b l a y e r  and p a s s i n g  t o  t h e  l i m i t  a t  a 
O, we o b t a i n  a s y s t e m  o f  o r d i n a r y d i f f e r e n t i a l  e q u a t i o n s  whose i n t e g r a t i o n ,  w i t h  a l l o w a n c e  
f o r  ( 2 . 1 ) ,  y i e l d s  t h e  f o l l o w i n g  [6 ,  7] 

q)(O.) = (~k) ' . /3polAo, 

(I) = Ai (~) d , _Q = (o (ik) -2/~ 

[Ai(~) is an Airy function which decays exponentially in the sector --~/3 < arg~ < ~/3]. 

The ratio p0/A 0 is established from the solution of problem (1.12), (1.14) for the upper 
potential region of the flow. It expresses the connection between excess pressure and the 

displacement thickness in the transonic velocity range. It is easily seen that p0/A0 = k2/ 

%(~, k); % = ~ik(m + ikK~), while ReX ~ 0 by virtue of the requirement of degeneration of 
the perturbations at Yl + =, x = const. 

This range is characterized by the fact that terms with a time derivative enter both 
into system (I.i0) (for the viscous subiayer) and into Eq. (1.12) (which governs the develop- 
ment of the external potential oscillations). The structure of the resulting waves is de- 
termined by the interaction of two essentially nonstationary fields, only one of which is 
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vortical. Not only is pressure induced by an increase or decrease in the displacement thick- 
ness and in turn actively influences the change in the latter, but it is also the deciding 
factor in the transmission of signals in the external region. This circumstance is reflected 
in the fact that the condition of free interaction, as the right side of the below dispersion 
relation which follows from it 

�9 (~) = Q(~,  k), Q = _(ik)V3t%(~,  k) ( 2 . 3 )  

depends explicitly on the frequency m. No similar situation was encountered earlier in an 
asymptotic analysis based on a multilayered subdivision of the region of disturbed motion of 
a viscous liquid which included subsonic and supersonic boundary layers [6, 7]. 

3. Dispersion Relation. We begin with the observation that all of the solutions ~ of 
the dispersion relation for any k § 0 can be fixed by means of ~ § gn (~ (~n (~ is the n-th 
root of the derivative dAi(~)/dr Thus, the dispersion relation determines the theoretical 
set of dispersion curves ~n = (ik)2/B~n- Here, in the limit of small wave numbers, these 
curves behave as the analogous curves for subsonic and supersonic boundary layers [6, 7]. 

Now let k in the right side of (2.3) take real values. Meanwhile, by virtue of sym- 
metry, it is sufficient to limit this relation to the semi-axis k > 0. In order to find the 
frequency of neutral oscillation of a gas with an amplitude which is constant over time, we 
put ~ = -iw 0. Here m0 is a real number. Designating D = ~0 - kK~, we immediately conclude 

from the equality argQ(--i~0, k )=I ~/6 at D>O. |--~ at D<0 that the dispersion relation in this case 

permits a unique solution satisfying the system 

~0k -~/~= ~: (<)-~/~, k'/VVk(~0-- kK~)= (<)~/~ 

(~,' = 2.298 and k,' = 1.0005 are the frequency and wave number of the neutral oscillations 
of the boundary layer in an incompressible fluid [6, 7]). The asymptotes of the solution 
m0 = m,(K~), k = k,(K~) of this system have the form 

~ ,  = ~ t K ~  r ~/~, k .  = k~ I K ~  l *~ at  K . - .  - -  oo, 
(3.i) ! ! r 3 

The subsequent analysis of (2.3) is based on Newton's iteration method, which we use 
to calculate the roots ~n(k); as the initial approximation for them at k << i, we chose the 
quantities ~n(~ All of the roots ~n beginning with the second give stable oscillations: 
Re~h(k) J 0 for any real k and n ~ 2. The first root ~l generates the dispersion curve 
~l(k), which at k = k, intersects the negative imaginary semi-axis at the point ml = -i~, 
corresponding to neutral pulsations. The perturbations become unstable at k > k..., when 
Re~l(k) > 0. The trajectory of this root in the complex plane w is shown in Fig? 1 for 
K~ = -i (i) and i (2). 

Qualitatively speaking, the path of both curves reminds us of how they were obtained 
for a boundary layer in an incompressible fluid [6, 7]. However, there is an important dif- 
ference between them. The increment Re~1, characterizing the intensification of Tollmin- 
Schlichting waves in an incompressible fluid, approaches the constant value vr2/2 at k + 
in accordance with the asymptote 

~1 = - - i k  ~ + ( ] / 5 / 2 ) ( t  - -  i) + ... ( 3 . 2 )  

The asymptote of the first root of dispersion relation (2.3), valid in the transonic velocity 
range, appears as follows: 

~ = --i(k~/a + ( i /3)K~k + (l/3)K2~kl/3) + ( [ / ~ 3 ) ( 1  - -  i)kl/6 + . . .  ( 3 . 3 )  

under the condition that k ~ ~, while the value of K~ is fixed. It fo•177 from this that 

the increment Re~ l ~ ~ as ~I/6/3, although its increase at moderate k is slight and does 
not have a significant effect on the form of the curves in Fig. i. 

The limiting behavior of Reml dictated by the asymptotes (3.2) and (3.3) contradicts 
the well-known fact that as k + = there should be a transition to stable oscillations with 
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an exponentially decaying amplitude, although this contradiction is expressed less clearly 
for an incompressible boundary layer. This transition is connected with the existence of a 
second pair of critical values of frequency and wave number, corresponding to the upper 
branch of the curve of neutral stability. An asymptotic analysis of the waves belonging to 
the neighborhood of this branch was made in [ii, 12] for an incompressible fluid. It is 
based on a more complex perturbation structure which leads to renormalization of both the 
independent variables and the sought functions. The latter fact makes it possible to estab- 
lish the scales of the above-mentioned second pair of critical values of frequency and wave 
number, calculate these quantities [13], and extend Eq. (3.2) into the neighborhood of the 
upper branch of the neutral curve by the method of combining asymptotic series. A similar 
analysis must be done for the transonic velocity range, but the development of unstable pul- 
sations with characteristic times and lengths, given by Eqs. (i.i), will be determined by a 
distinct maximum of Rem I at k ~ 3-4 (see Fig. i). 

In conclusion, let us evaluate the range of Mach numbers in which the above theory is 
valid. Let ~* be the frequency in the initial system of units of measurement and let v be 
the dimensionless frequency normalized by means of the expression 

= (u e2Cl14~ - 'r  (T: /T: )  ~ T  1. 

The latter is convenient because its value v, for neutral oscillations propagating in a sub- 
sonic boundary layer with M~ < 1 will be [6, 7] 

~, = (1 - ~ ) 1 / , .  ( 3 . 4 )  

As a simple check shows, by virtue of the transformation (1.8) for time, this value coincides 
with the limit m, which is approached by the above-examined frequency m0 at K~ + -~ and which 
is predicted by the first formula of (3.1). It is evident from the definition (1.13) that 
K~ + -~ when the difference i - M~ 2 is positive and fixed, while the parameter ~ + 0. Thus, 
the critical frequency of oscillations propagating in a transonic flow matches the critical 
frequency calculated for subsonic flows as K~ decreases. Recalling the affine transforma- 
tions (1.9), we can see that a similar situation holds in regard to excess pressure and the 
components of the vector of perturbed velocity. In other words, the mixed derivative a2T1/ 
Bt3x in Eq. (1.12) becomes negligibly small if K~ +-~. 

As regards the rate at which the frequency ~, approaches its limiting values, it is 
evaluated as follows. In the transonic velocity range 

~, = A0),  (K~) ,  Koo = ( M S  - -  1 ) /A4 ,  

A = [482Ci/4)~l/2(Tw*/Too*)]l/9. 
(3.s) 

The parameter ~ changes little with the variation of R, and we can assume that E z 0.2 in 
the range of Reynolds numbers for the laminar-turbulent transition of interest to us here. 
The ratio Tw*/T~* for a thermally insulated plate obeys Crocco~s law [14] 

Tw*/Too* = I q- [(• - -  l ) / 2 ]M~ 2, 

i.e., Tw*/T=* + (• + 1)/2 at M= + i (• is Poisson's adiabatic component). We will assume 

226 



that the plate is in a flow of air with T~* = 293 K. Then • = 1.4, while C ~ 0.79; as a re- 
sult, we obtain & ~ 0.778. The Mach number M~ takes values from 0 to 2 with a change in the 
similarity parameter within the interval -2.73 i K~ E 8.19, from which it is evident that 
attainment of the limit K~ ~ -~ is nearly impossible under practical conditions. 

The curves representing Eqs. (3.4) and (3.5) are denoted by the numbers 1 and 2 in Fig. 
2. Although they approach one another with a decrease in M~, there remains a 14% difference 
between them at M~ = 0 due to the finite value of r The critical frequency of oscillation 
in the transonic velocity range approaches its asymptotic value slowly. Conversely, the ap- 
proach of the asymptote ~, = &9(w,'/k,')2/(M~2 - i), established by the second formula of 
(3.1) for a supersonic boundary layer and shown by the dashed line in Fig. 2, is very rapid. 
At just M~ = 1.5, curve 2 nearly merges with this line. 

The most important result of the theory that has been developed is the passage of the 
critical frequency (as the remaining relations) through the threshold value M~ = i. Thus, 
its range of application covers a broad interval of subsonic and moderately supersonic ve- 
locities. An additional source of error is introduced into the theory when the frequency 
m,' of neutral oscillations of a boundary layer in an incompressible fluid is calculated 
from the limiting value, when R + ~. This source should be kept in mind when comparing the 
predictions of the asymptotic theory with data from wind-tunnel measurements [15]. 
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